Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

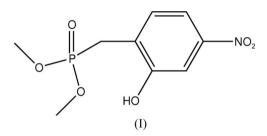
Xiang Li,^a Ming Lu^b and Chunbao Li^a*

^aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ^bSchool of Electronic and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: lichunbao@tju.edu.cn

Key indicators

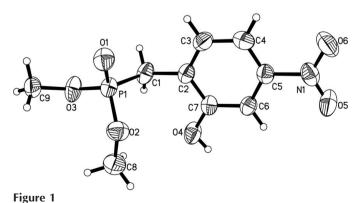
Single-crystal X-ray study T = 294 K Mean σ (C–C) = 0.003 Å R factor = 0.040 wR factor = 0.152 Data-to-parameter ratio = 15.3


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dimethyl (2-hydroxy-4-nitrobenzyl)phosphonate

In the title phosphonate derivative, $C_9H_{12}NO_6P$, intermolecular $O-H\cdots O$ hydrogen bonds link the molecules in zigzag chains along the *b* axis. Received 6 December 2005 Accepted 19 December 2005 Online 23 December 2005

Comment


Phosphonate esters are important intermediates in the preparation of flame-retardant materials (Acher & Wakselman, 1982). As part of our work in this area, the title compound, (I), was prepared by the reaction of 1-bromo-methyl-2-hydroxy-4-nitrobenzene and trimethyl phosphite (Grawe *et al.*, 2002) and its structure is reported here (Fig. 1 and Table 1).

The benzene ring and its nitro substituent are essentially coplanar [interplanar angle = $3.4 (2)^{\circ}$], while the O1-P1-O2-C8 and C1-P1-O3-C9 torsion angles are 164.7 (2) and -159.2 (2)°, respectively, indicating that the atoms in these residues are also almost coplanar. In the crystal structure, O-H···O hydrogen bonds link the molecules into zigzag chains along the *b* axis (Fig. 2).

Experimental

The title compound was prepared by the method of Grawe *et al.* (2002). Single crystals suitable for crystallographic analysis were

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved obtained by slow evaporation of a tetrahydrofuran solution [m.p. 441 (2) K]. IR (KBr, ν , cm⁻¹): 1502 (CN), 1195 (PO). ¹H NMR (DMSO): δ 7.64–7.61 (*m*, 2H), 7.41–7.39 (*m*, 1H), 3.61 (*s*, 3H), 3.58 (*s*, 3H), 3.31 (*s*, 1H), 3.27 (*s*, 1H).

 $D_x = 1.488 \text{ Mg m}^{-3}$

Cell parameters from 2199

Mo $K\alpha$ radiation

reflections

 $\begin{array}{l} \theta = 2.4 {-} 26.0^{\circ} \\ \mu = 0.25 \ \mathrm{mm}^{-1} \end{array}$

T = 294 (2) K

Block, yellow $0.30 \times 0.24 \times 0.12 \text{ mm}$

Crystal data

 $C_{9}H_{12}NO_{6}P$ $M_{r} = 261.17$ Monoclinic, $P2_{1}/n$ a = 7.8154 (15) Å b = 12.963 (3) Å c = 11.669 (2) Å $\beta = 99.660$ (3)° V = 1165.4 (4) Å³ Z = 4

Data collection

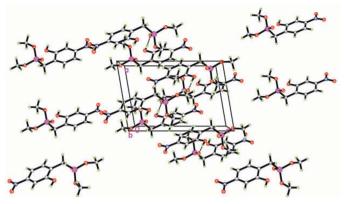
s
(I)

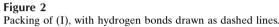
Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1314P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.040$	+ 1.0878P]
$wR(F^2) = 0.152$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.71	$(\Delta/\sigma)_{\rm max} = 0.002$
2408 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
157 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (°).


C8-O2-P1	123.1 (2)	C9-O3-P1	121.49 (18)
O1-P1-O2-C8	164.7 (2)	C1-P1-O3-C9	-159.2 (2)


Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O4-H4\cdots O1^i$	0.82	1.81	2.625 (3)	175
a	. 1 . 1	. 1		

Symmetry code: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

All H atoms were refined using a riding model, with C-H = 0.93 Å and $U_{iso} = 1.2U_{eq}(C)$ for aromatic H atoms, C-H = 0.97 Å and $U_{iso} = 1.2U_{eq}(C)$ for CH_2 H atoms, C-H = 0.96 Å and $U_{iso} = 1.5U_{eq}(C)$ for CH_3 H atoms, and O-H = 0.82 Å and $U_{iso} = 1.5U_{eq}(C)$ for OH H atoms.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors thank the TJU Young Teacher Foundation (W50501) for financial support.

References

Acher, F. & Wakselman, M. (1982). Bull. Chem. Soc. Jpn, 55, 3675–3676.
Bruker (1997). SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Grawe, T., Schrader, T., Zadmard, R. & Kraft, A. (2002). J. Org. Chem. 67, 3755–3763.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.